Aqueous‐Containing Precursor Solutions for Efficient Perovskite Solar Cells
نویسندگان
چکیده
Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.
منابع مشابه
Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor.
A novel, aqueous precursor system (Pb(NO3)2 + water) is developed to replace conventional (PbI2 + DMF) for fabricating methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). When the morphology and surface coverage of the Pb(NO3)2 film was controlled during coating, a power conversion efficiency of 12.58% under standard conditions (AM1.5, 100 mW cm(-2)) was achieved for the PSC.
متن کاملHigh efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...
متن کاملEfficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity
Poor stability of organic-inorganic halide perovskite materials in humid condition has hindered the success of perovskite solar cells in real applications since controlled atmosphere is required for device fabrication and operation, and there is a lack of effective solutions to this problem until now. Here we report the use of lead (II) thiocyanate (Pb(SCN)2) precursor in preparing perovskite s...
متن کاملEffects of precursor solution composition on the performance and I-V hysteresis of perovskite solar cells based on CH3NH3PbI3-xClx
Precursor solution of CH3NH3PbI3-xClx for perovskite solar cells was conventionally prepared by mixing PbCl2 and CH3NH3I with a mole ratio of 1:3 (PbCl2:CH3NH3I). While in the present study, CH3NH3PbI3-xClx-based solar cells were fabricated using the precursor solutions containing PbCl2 and CH3NH3I with the mole ratios of 1:3, 1.05:3, 1.1:3, and 1.15:3, respectively. The results display that th...
متن کاملA one-step low temperature processing route for organolead halide perovskite solar cells.
Organolead trihalide perovskite solar cells based upon the co-deposition of a combined Al2O3-perovskite layer at T < 110 °C are presented. We report an average PCE = 7.2% on a non-sintered Al2O3 scaffold in devices that have been manufactured from a perovskite precursor containing 5 wt% Al2O3 nanoparticles.
متن کامل